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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

Fig. 1 Long-term strategic research on CA based sustainable intensi�ication in wheat and maize based 
systems – initiated by CIMMYT Bangladesh in 2009

 (Source: Gathala, 2023)
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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

3. Impact of CA on Soil Health 
Minimum tillage creates impact on the physical, chemical and biological properties of 

soil (Franzluebbers, 2002), however, its extent depends on soil texture, climate, cropping 
system, residue volume, soil’s initial status, and duration of this practice (Lal, 1997). 
Conservation agriculture is a good solution to restore and preserve soil quality (Sharma et 
al., 2019). It is vitally important to develop strategies for sustainably increasing food 
production without affecting soil health (Montpellier Panel, 2014). 

Saurabh et al. (2021) used SQI (soil quality index) as an instrument based on physical 
[macro aggregate stability (MAS), available water capacity (AWC) and soil penetration 
resistance (SPR)], chemical [soil organic carbon (OC), available N, available P 0and available 
K] and biological [microbial biomass carbon (MBC), �luorescein diacetate (FDA) and 
dehydrogenase activity (DHA)] properties of soil; SQA calculated by PCA. After a 
meta-analysis, they found soil properties like MAS, OC, MBC, FDA and DHA higher by 47, 18, 
56, 48 and 53%, respectively, under ZTDSR-ZTW (T7: Zero-till direct seeded rice - Zero-till 
wheat) than RPTR-CTW (T1: Random puddled transplanted rice - Conventional till 
broadcasted wheat), at 0-10 cm. The higher system rice equivalent yield of 12.41 t ha-1 was 
observed at SQI value of 0.90 at 0-10 cm and 0.86 at 10-20 cm in T7 treatment. 

3.1 Soil bulk density and aggregation

Minimum tillage with retention of crop residues decrease soil bulk density (Topa et al., 
2021), showing a 0.8-1.5% lower (Zhang et al., 2009) or by 0.05 g cm-3 lower (Ghuman AND 
Sur, 2001) as compared to conventional tillage (CT) with no residue. Xu and Yao (1988) in 
China, Zeleke et al. (2004) in Ethiopia, and Singh et al. (2007) in India measured signi�icant 
decreases in BD after 3-5 years of crop residue incorporation. However, from a global 
analysis Li et al. (2020) concluded an increased bulk density for no-tillage and commented

Strip tillage Bed planting Zero till maize 

Fig. 2 Strip tillage, bed planting and zero tillage cultivation systems
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residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
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depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

experimental duration be the predominant factors controlling the response of soil 
properties to NT practice.

Compared with conventional tillage (CT), no tillage (NT) with straw mulching (SS) increases 
the macro-aggregates (> 0.25 mm) by 12–26% (Liu et al. 2023). Zhang et al. (2009) and Jahangir 
et al. (2021) also reported better aggregation and stability in CA tillage plots. Long-term ZT 
along with optimum nutrient and residue management enhances soil SOC concentration, in 
turn leading to favorable alterations in soil aggregation, hydraulic conductivity, porosity and 
moisture retention (Bhattacharyya et al., 2019; Dey et al., 2020). More immediate effect of 
balanced nutrition in CA can be visible through improvement of microbial biomass carbon 
(MBC), soil microbial diversity and enzymatic activities (Dey et al., 2016).  

3.2 Soil carbon sequestration

Generally, soil organic carbon (SOC) increases in CA plots (Choudhary et al., 2018). It is 
reported to be 7.3% higher SOC than in intensively plowed plots at 0-20 cm depth (Chen et 
al., 2009). Many other researchers have also reported a positive effect of minimum or no 
tillage on SOC (Piazza et al., 2020; Adak et al., 2023; Linsheng et al., 2024). Adoption of 
long-term (15 years) zero or reduced tillage with residue incorporation led to a 15.8–25.7% 
increase in SOC stock compared to CT-R (conventional tillage with residue incorporation 
(Fagodiya et al., 2024). Based on meta-analysis Wang et al. (2021) state that straw returning 
to the �ield signi�icantly increases SOC content by an average of 13.97% ± 1.38% (n = 446) 
and its variation depends on temperature, initial SOC content, duration of straw return 
(maximum in 6-9 years) and cropping systems. CA can help sequester carbon in soil at a rate 
of 0.2 to 1.0 t ha-1 yr-1, as observed by several researchers (Sá et al., 2013; Corsi et al., 2014). 
For IGP regions Powlson et al. (2016) have reported an annual increase in SOC stock 
between 0.16 and 0.49 Mg C ha-1yr-1 in CA plots. As observed in Bangladesh the CA practice 
depending on the duration of experiment contributes soil C stock at a rate of 0.5-1 t ha-1yr-1 
(Alam et al., 2020, Jahangir et al., 2021; Islam et al., 2022; Kader et al., 2022; Kumar et al., 
2022; Maniruzzaman, 2022). 

Long-term ZT along with residue management can enhance the concentration as well as 
stability of SOC (Bhattacharyya et al., 2013; Parihar et al., 2019; Jat et al., 2019) and the SOC 
content within macro-aggregates could be 25-30% higher in the ZT plots than in CT at 0-15 
cm soil depth (Modak et al., 2020). After 10 years of crop rotation, plots under no-till and 
chisel plow treatments in 0–10 cm depth, had 7–13%, 34–35% and 9–15% higher non-labile 
fraction, very-labile fraction and TOC, respectively compared to conventional tillage (Topa et 
al., 2021). Several studies indicate that the additional C accumulated under CA practices such 
as no-till is concentrated in particulate organic fractions or other pools considered ‘labile’, 
with only marginal increases in more recalcitrant pools (Bhattacharyya et al., 2012; O’Rouke
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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 

Keywords:  CA adoption, CA bene�its, CA research, Crop residue, Crop rotation, Zero tillage  

1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

et al., 2015). Long-term ZT along with optimum nutrient and residue management enhances 
the soil SOC concentration as well as its stability (Parihar et al., 2019; Dey et al., 2020). The 
CA reported to achieve annual C-sequestration rate as high as ∼1.15 Mg ha−1 yr−1 under 
PB-SSNM, which indicated better stabilization of SOC under CA-based precision nutrient 
management (Parihar et al., 2020). Choudhary et al. (2018) observed higher SOC and MBC in 
ZT than in CT and in HR than LR in Indo-Gangetic Plains under rice cropping system.

A review of temperate region studies showed the impact of cereal straw incorporation on 
SOC content to be small and often non-signi�icant, even when continued for up to 25 years 
(Powlson et al., 2011). The rate of residue decomposition, and hence SOC accumulation, is 
more sensitive to environmental conditions (temperature, moisture) for surface-applied 
residues, as in CA, than for those that are incorporated (Helgason et al., 2014). Smaller SOC 
increases are expected in tropical regions compared to temperate due to more rapid 
decomposition under higher mean temperatures (Powlson et al., 2011). Conservation tillage 
usually leads to the accumulation of SOM in the topsoil (Piazza et al., 2020), the effects of 
rhizospheric microbial hot zone and nutrient leaching on enzyme activities should not be 
underestimated (Wang et al., 2023). Dolan et al. (2006) also observed that surface soil (0–20 
cm) yielded 30% more SOC with NT than CT, but this tendency was reversed at a soil depth 
beyond 20 cm, possibly due to inversely squeezed residue.

Linsheng et al. (2024) observed a positive effect of conservation tillage (minimum or no 
tillage) on SOM, microbial carbon and nitrogen via promoting soil enzyme activity with slope 
ranging from -0.07 to 0.94, as evidenced from a meta-analysis. In addition to CA impact on 
crop yields, it is very often reported that CA mitigates climate change by sequestering 
organic C in soil (Jat et al., 2012; Lal, 2015; UNEP, 2013), though the experimental evidence 
for this is mixed and causes controvers0y (Powlson et al., 2014, 2015; Neufeldt et al., 2015). 
A meta-analysis shows that crop residue addition leads to C sequestration in China, however 
its potential is offset when residue substantially increases soil emission of N2O (potential 
GHG) that also depends on the quantity and types of residues showing emission factor 
varying from 0.62 to 2.8% (Chen et al., 2013)

 
3.3 GHG emission

In CT the NH3 emission ranged from 14 to 17% while in ST it varied between 16 and 21% 
(Uddin et al., 2021, Fig. 3). Higher NH3 emission in ST with residue incorporation is caused 
mainly by stoichemical changes in soil bio-physico-chemical conditions, especially redox 
chemistry and pH. However, these changes are needed to investigate further in different 
agroecosystems and cropping patterns. In potato �ield, crop residue incorporation reduces 
NH3 emissions but in maize �ields they increase it (Jahangir et al., 2022).
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Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

CT=Conventional tillage, ST=Strip tillage, T1= +NPKZn, T2= -N+PKZn, T3= -P+NKZn, 
T4= -K+NPZn, T5= -Zn+NPK

Fig. 3 CA shows 24.5% less carbon footprint and 28.5% less emission intensity or global warming 
potential than CT. Source: Gathala, 2023.

In a situation with high rates of N fertilizer, a combination of no-till and straw retention 
led to a decrease in N2O emission, with similar or increased crop yields compared to 
conventional tillage with straw removed (Aryal et al., 2016; Huang et al., 2015). CA can 
decrease greenhouse gas emissions (GHG) relative to conventional puddling and 
transplanting (Alam et al., 2016, 2019). In maize-wheat system, the zero tilled permanent 
broad bed (PBB) with residue (R) retention had signi�icantly improved SOC pool at 0–30 cm 
soil layer compared to CT (Das et al., 2018). Greater N2O �luxes occurred in CT (conventional 
tillage) than in CA (conservation agriculture) based systems. Parihar et al. (2018) observed 
higher SOC and lower N2O �luxes in MWMb (maize-wheat-mungbean) and MCS 
(maize-chickpea-sesbania) than in MMS (maize-maize-sesbania) cropping system. 

Reduced tillage or no-tillage combined with straw return is more effective in increasing 
activity of most of soil enzymes, but temperature and edaphic factors modulate the response 
of soil enzymes to conservation tillage (Jahangir et al., 2021; Wen et al., 2023). Annual 
temperature, annual precipitation, soil pH and straw size are the key factors for CH4, N2O, CO2 
and GWP, respectively. Straw return amount, straw size and straw return method 
optimization could reduce GWP. Amount of straw ≥ 7500 kg ha-1, size ≥ 5 cm and 
incorporation are suggested to reduce GWP (He et al., 2024). Reduced tillage increases GHG 
(N2O and CH4) emissions and decreases crop yields, whereas no- tillage decreases GHG 
emissions, with no effect on crop yield (Yue et al., 2023). Reduced tillage increases N2O 
emissions in temperate wheat �ield (Jahangir et al., 2011) and also in subtropical 
wheat-mungbean-rice system (Jahangir et al., 2021). Crop residue incorporation and 
reduced tillage effects GHG emissions still remain in debate which may depend on soil, 
agroclimatic and cropping systems suggesting requirement of more regional data for 
developing appropriate management strategies.
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Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
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impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

3.4   Non-puddled transplant rice yields

Puddling is a traditional practice of tilling saturated soil for cultivating wetland rice. It 
helps water retention by breaking capillary tube and also helps weed control. On the 
negative side, puddling destroys soil aggregates and macropores, causes soil compaction, 
and decreases water permeability due to formation of a hard plough pan zone in the 
subsurface layer (Alam et al., 2020; Jahangir et al., 2021). 

In addition, it can restrict root development and water and nutrient use as in the 
rice-wheat cropping system (Gathala et al., 2011), though some reports do not support this 
view (Humphreys et al., 2005). These negative effects are impacted on the dry season crops 
(e.g. wheat, maize, lentil etc.) following rice. The hard plough pan increases bulk density and 
soil penetration resistance, and reduces hydraulic conductivity and macroporosity of soil 
(Gathala et al., 2011; Chauhan et al., 2012).

In the Indo-Gangetic Plain regions, rice crop in CA �ields is established by dry direct 
seeding method, SRI method or machine transplanting method (Jat et al., 2014; Saurabh et 
al., 2021, Magar et al., 2022). However, in Bangladesh, recently non-puddled manual 
transplanting system for rice has been developed (Haque et al., 2016; Bell et al., 2019; 
Salahin et al., 2021; Kader et al., 2022) which involves strip tillage (ST), irrigation to saturate 
and soften the soil for 18 to 24 hours and then transplanting seedlings in the strips. Rice 
grown with single pass wet tillage and maize grown with strip tillage gave the highest gross 
margin over time, but tillage methods and residue treatment produced no signi�icant grain 
yield differences (Islam et al., 2015).  

3.5  Crop productivity

CA farming supports long-term crop yield and factor productivity (FAO, 2011) with 
environmental and economic advantages. Jat et al. (2019) reported signi�icantly higher 
system productivity from a 10-year old CA-experiment under zero tillage (ZT) or permanent 
bed (PB) compared with conventional tilled (CT) system in eastern IGP. Practising zero 
tillage (ZT) in �lat and permanent raised beds (PB), combined with balanced fertilization 
often proved bene�icial in sub-tropical Indian soils in several wheat-based cropping systems 
(Jat et al. 2019; Parihar et al., 2019). Parihar et al., (2016) showed that SSNM (site-speci�ic 
nutrient management) based nutrient application coupled with CA-based tillage practices in 
maize-wheat-mungbean system produces higher system productivity. 

Many reports suggest that the transition from CT to no-till decreased yield in early years 
until increases in soil C, aggregate stability, and water holding capacity (Kumar et al., 2012; 
Alam et al., 2020). From a global meta-analysis (63 countries representing 50 crops -rice, 
wheat, maize, oilseeds, legumes, etc.), Pittelkow et al. (2015) concluded that no-tillage 
system was the 4th most in�luential variable, with a lag period of several years (5+ years)

09

CA research in Bangladesh



IMPACTS OF CONSERVATION AGRICULTURE ON SOIL 
HEALTH AND CROP PRODUCTIVITY: RESEARCH 
ADVANCES AND ADOPTION BARRIERS IN BANGLADESH
M. Jahiruddin*, M.M.R. Jahangir
Department of Soil Science, Bangladesh Agricultural University, Mymensingh
*Corresponding author: m_jahiruddin@yahoo.com 

Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 

Keywords:  CA adoption, CA bene�its, CA research, Crop residue, Crop rotation, Zero tillage  

1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

occurring before no-till yields matched CT yields and legumes and wheat performed better 
under no-till system relative to the results reported for rice. Positive yield response in 
non-puddled rice also took six years in the Bangladesh study (Kader et al. 2022; Farooq et al., 
2011).  CA tillage reduces land preparation cost (water, labor and energy savings), irrigation 
cost and increases economic yield relative to conventional tillage (Bell et al., 2019; Jat et al., 
2019; Salahin et al., 2021.). System productivity and net returns under PB +  MB (permanent 
bed + mungbean) were signi�icantly increased by 28.2–30.7% and 36.8–40.5% compared to 
CT, respectively in north-west IGP of India (Jat et al., 2018). 

Zero tillage with residue retention had a mean yield advantage of 5.8%, a water use 
ef�iciency increase of 12.6%, an increase in net economic return of 25.9% and a reduction 
of 12–33% in global warming potential in maize–wheat systems (Jat et al., 2020). 
Increasing topsoil depth supported signi�icantly increased grain yield of maize which was 
related to positive changes in crop physiology (root surface area, LAI, photosynthetic rate, 
etc.). The lowest yield was noted in S1 (10 cm soil depth) and the highest in S5 ¬¬¬ (50 cm 
depth) (Zhang et al., 2024).  Guo et al. (2020) observed a 9-22% yield loss in maize when 
tillage depth was reduced from 30 cm to 10 cm. Zero-tillage and crop residue retention led 
to increased crop productivity together with increased TOC (12%) and increased available 
P, K and Zn contents (11-16%) over conventional tillage with removal of residues (Nandan 
et al, 2019).

3.6 Rice water requirement

Long-term CA reduces plough pan formation as it avoids puddling and therefore soils 
remain undisturbed. Removal of plough pan gradually increases soil water percolation and 
thus enhances irrigation water requirement of rice. However, in region where ground water 
table is deeper reduced tillage may help enhance groundwater recharge and storage. In dry 
period or in the drought prone regions CA can increase soil water storage by enhancing 
water percolation and redistribution or storage in the soil pro�ile which will reduce soil 
water de�icit. Moreover, in other than rice, increased water percolation may increase crop 
yields by enhancing availability of residual water. In the CA systems, this is, by far, the most 
interesting area of research which needs to be explored. The water and crop economy of the 
removal of plough pan in rice �ields are also unknown.  Hydrological characterization and 
soil-groundwater hydrology in CA systems need more attention for exploring the bene�its of 
CA which can be region and crop speci�ic.

4. Advances of CA Research in Bangladesh
Recent studies in the EGP (Eastern Gangetic Plains - southern Nepal, north-eastern India 

and Northern Bangladesh) suggests that CA plays a signi�icant role in enhancing crop 
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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

productivity growth, resource use ef�iciency and soil and water quality and reduces 
production costs in comparison with non-CA practices (Islam et al., 2019; Gathala et al., 
2020; Keil et al. 2020). 

CA performed better than CT in different winter crops and cropping systems but not in 
monsoon rice; however alternate tillage (rice tilled and wheat, maize, mungbean untilled) 
can be an alternative option (Hoque et al., 2023). Scope exists to intensify the cropping 
systems and practise triple cropping systems, especially by including short-duration pulses 
(mungbean), oilseeds (mustard), and �iber crop (jute) in the EGP (Islam et al., 2019, Islam et 
al., 2022: Rashid et al., 2019).

Repetitive tillage requires intensive water and energy use (Islam et al., 2019) and emits 
large amounts of greenhouse gases (Jat et al., 2020). Research in south Asia has shown that CA 
or strip tillage (ST), with residue retention, commonly results in greater  yields and pro�its 
from non-rice crops compared to rice (Islam et al., 2019;  Akter et al., 2021). Rice seedlings can 
be transplanted without puddling, which thus helps save water, energy, labor, and overall 
production cost for rice cultivation (Haque et al., 2016, Hossen et al., 2018). The review of 
several recent studies established that heavy soils (silty clay loam) had either lower or equal 
rice yield (−6.1 to 2.3%) under no-till (non-puddled) system compared to conventional 
puddled system than lighter soils (sandy loam) where rice yield reduction was about 10%, 
which can be attributed to higher percolation rate and low nitrogen use ef�iciency (Chaki et al., 
2021), nevertheless rice yield penalty (<5%) was compensated by higher yields of the 
succeeding dry season crops (Rashid et al., 2019; Hoque et al., 2023) in northwest Bangladesh. 
The Government of Bangladesh is now promoting agricultural mechanization through a mega 
subsidy scheme (National Agricultural Mechanization Policy, 2020). 

Both minimal soil disturbance and increased crop residue retention, core components of 
CA, increased S pools in soils primarily due to increased SOC sequestration (Kumar et al., 
2022). Adoption of CA practices by farmers in the intensive rice-based triple-cropping systems 
on the EGP is slowly increasing (Bell et al., 2019; Haque et al., 2016) and the CA practices not 
only increase crop yield but also mitigate the effects of rice-based cropping systems on 
greenhouse gas emission (Alam et al., 2016). In addition, minimal soil disturbance and 
increased residue retention practiced for 5 years increased soil organic carbon (SOC) (0–10 cm 
soil depth) by 68% in intensive triple-cropping, rice-based cropping systems on the Grey 
Terrace soil of the EGP (Alam et al., 2018). Since SOM is a chief source of N, P & S and CA 
practices add organic matter to soil, thus its (SOM) decomposition is likely to alter forms and 
availability of N, P & S in soil. Very recently several contract projects and PhD student’s 
research indicate that CA practice depending on the duration of experiment could contribute 
soil C stock at 0.5-1 t ha-1 yr-1 (Alam et al., 2020, Jahangir et al., 2021; Islam et al., 2022; 

Kader et al., 2022; Kumar et al., 2022; Maniruzzaman, 2022). In silt loam soil, the ZT 
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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 

Keywords:  CA adoption, CA bene�its, CA research, Crop residue, Crop rotation, Zero tillage  

1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

UPTR (zero till unpuddled transplanted rice) performed similar grain yield and gave higher 
water productivity compared to PTR (puddled transplanted rice), but in sandy loam soil the 
PTR showed better results (Chaki et al., 2021).

5. Barriers of CA practices in Bangladesh
Many scientists and extension specialists raise several issues with zero tillage (ZT) in 

terms of diseases, insects, perennial weeds, soil compaction, nutrient immobilization, 
persistence of pesticide residues, and buildup of surface crop residues (Hobbs and 
Govaerts, 2010). Perhaps one of the biggest barriers to the widespread adoption of CA is 
to convince the farmers that satisfactory crop production is achievable with minimal or no 
tillage and crop residue retention, beyond the advantages of its potential to lower 
production costs. The Followings are the major barriers of CA adoption in Bangladesh (Jat 
et al., 2014; Paz et al., 2024):

• Lack of farmers awareness and mind set about CA practice and its bene�its; 

• Farmers’ perception (tradition) about necessity of ploughing and leveling of land;

• A yield penalty in the �irst few years (3-5 years) for rice is one of the issues that need to be 
considered for policy framing on CA. However, in other than rice, the yield under CA 
increases from the beginning which can be a trade-off and be a compensation for crop 
rotation in CA. In addition, government can compensate such yield loos for rice to farmers 
who are practicing CA for rice.

• Unavailability of appropriate planting equipment/seeders, particularly for small and 
medium-sized farmers (Magar et al., 2022); 

• Lack of government subsidy to purchase CA machines; 

• Widespread use of crop residues for animal feed, fuel and roo�ing material as well as 
burning the residue for timely seeding of the following crop;

• More suitable to dryland crops (e.g. wheat, mustard, pulses) and less to wetland rice;

• Unavailability of more crop options and rotations;

• CA may produce lower yield for the �irst few years;

• Lack of skilled and scienti�ic manpower, as well as adequate technical advisors, to provide 
quality technical assistance and training to the farmers; 

• Weed infestation is a big constraint to the adoption of CA practice in the initial years; 
however it eventually ceases since weed seed bank is reduced with advancement of 
cropping (Zahan et al. 2021). 

• Unavailability of suitable herbicides and alternative management strategies for weed 
management; herbicide resistance may build up. 
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Abstract
Conservation Agriculture (CA) is a vibrant practice globally to achieve pro�itable and 

sustainable crop production with environmental sustainability. Minimum tillage, crop 
residue retention and diversi�ied crop rotation are the core principles of CA. This practice 
offers numerous bene�its, notably carbon sequestration, reduced GHG emission, improved 
soil aggregation, increased water use ef�iciency, and decreased costs of crop production. 
However, adoption of CA in sub-tropical agro-ecosystems is very low principally due to lack 
of knowledge, awareness and policy. This review presents a comprehensive analysis of the 
impact of CA on soil, crops and environment with a focus on CA research and adoption 
barriers in Bangladesh. An overview of Bangladesh works indicates that the CA practice, 
depending on the duration of experiment, contributes to C stock in soil at a rate of 0.5-1 t ha-1 
yr-1. However, magnitude of CA bene�its depends on the duration of CA adoption, amount & 
types of crop residue retention and nature of crop diversi�ications. Adoption of CA in 
Bangladesh is low as well as slow which necessitates motivation campaign to the farmers 
with appropriate policy intervention. Farmers �ind weed infestation a big constraint which 
however can be manageable by judicious use of herbicides. The CA practice results in lower 
or equal crop yield for the �irst few years; the yield bene�it is visible generally after 3-5 years, 
depending on crop and soil types, when soil quality viz. carbon sequestration, bulk density, 
water use ef�iciency are improved. This approach is more suitable to dryland crops (wheat, 
mustard, pulses), not potato and less to wetland rice. Most CA research is done on single 
crops and short-term basis; future CA research needs to be directed to a longer-term 
cropping system and for smallholder farmers. The cropping systems in Bangladesh are 
predominantly rice based where the increasing scarcity of resources (water, labor and 
energy) and production costs make this cropping system less pro�itable and less sustainable. 
Nevertheless, integrating the suitable crop rotation with CA based best management 
practices and appropriate tillage machines could be an effective means for sustained crop 
productivity and economic bene�its for smallholder farmers. Hence, appropriate 
government policy support is needed for increasing adoption of CA by the farmers. 
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1. Fundamentals of Conservation Agriculture

1.1 Concept of CA
Conservation Agriculture (CA) is a concept that aims to achieve improved and sustained 

crop productivity, increased pro�its and food security while preserving and enhancing the 
resource base and the environment (FAO, 2014a). Thus, it is a good practice for Sustainable 
Land Management (SLM). CA is a base for sustainable and pro�itable crop production and it 
complies with the ideas of ecological sustainability (Kassam et al., 2009; Friedrich, 2013; Jat 
et al., 2014). Conservation Agriculture enhances biodiversity and biological processes above 
and below the ground surface. Soil interventions such as mechanical tillage are reduced to a 
minimum or zero, and external inputs such as agrochemicals and plant nutrients of mineral 
or organic origin are applied optimally and in ways and quantities that do not interfere with, 
or disrupt, the biological processes (FAO, 2014a).

1.2 Principles of CA
Conservation Agriculture is characterized by three linked principles (FAO, 2014b): 
• No or minimal mechanical soil disturbance
 That is no-till and sowing or broadcasting of seeds or direct placing of planting materials 

in the soil; in special cases limited strip or band seeding disturbing less than 30% of the 
soil surface, as opposed to repeated ploughing.

• Maintenance of an organic soil mulch cover, especially by crop residues, crops or cover 
crops, as opposed to burning or removing them.

• Diversi�ication of crop species grown in sequence or associations through rotations or, in 
case of perennial crops, associations of plants, including a balanced mix of legume and 
non-legume crops, as opposed to growing non-legume crops in a rotation.

 
1.3 Bene�its of CA
There are numerous medium- to long-term bene�its of CA, as follows: 
(i) Decreased production costs (Crabtree, 2010; Hossain, 2024); 
(ii) Improved soil quality which refers to the soil's physical, chemical and biological 

characteristics (Rekwar et al. 2024); 
(iii) Long-term C sequestration and increased soil organic matter (Saharawat et al., 2012; 

Corsi et al., 2012); 
(iv) Improvement of water and nutrient use ef�iciencies (Jat et al., 2012; Saharawat et al., 

2012), 
(v) Enhancement of production and productivity @ 4-10% (Kader et al., 2022; Gathala et 

al., 2011), 
(vi) Timely sowing of seeds (Malik et al., 2005; Johansen et al., 2012); 
(vii) Reduced greenhouse gas emissions and improved environmental sustainability 

(Rahman et al., 2024; Yue et al., 2023; Huang et al., 2011), 

(viii) Avoiding crop residue burning, which reduces nutrient loss and pollution (Sidhu et al., 
2007); 

(ix) Opportunities for crop diversi�ication and intensi�ication (Jat et al., 2005);

(x) Reduced loss of nitrogen for slow breakdown of plant residues resulting in slow 
release of mineralizable N  (Kassam et al., 2009; Alam et al., 2020);

(xi) Limited weed seeds stay in the sub-surface layer, which hardly germinate from the 
deep soil and thus weed seed bank ultimately is diminished (Zahan et al. 2021; Steckel 
et al., 2021). 

 
2. Brief History of CA Adoption

2.1 Global context
Tillage posed questions for the �irst time in the 1930s, when the dustbowls devastated 

wide areas of the mid-west United States. The concept for reducing tillage and keeping soil 
covered came up and the term conservation tillage was introduced. Seeding machinery 
development occurred in the 1940s to seed directly in the �ield without any soil tillage. Then, 
theoretical concept resembling today’s CA principles was elaborated by Edward Faulkner in 
his book “Ploughman’s Folly” (Faulkner, 1945) and Masanobu Fukuoka with the “One Straw 
Revolution” (Fukuoka, 1975). But it was not until the 1960s for no-tillage to enter into 
farming practice in the USA (Kassam et al., 2014a). Then it took another 20 years before CA 
reached a signi�icant level of adoption. From the early 1990s CA started growing 
exponentially, leading to a revolution in the agriculture of southern Brazil, Argentina and 
Paraguay. During 1990s the CA concept attracted attention of the other parts of the world, 
including international research organizations such as FAO, World Bank, GIZ, CIRAD, 
CIMMYT and CGIAR. Adoption of CA started in industrialized countries after the end of the 
millennium, particularly in Canada, USA, Australia, Spain, Italy, Finland, Ukraine and Russia. 
Few crops like root and tuber crops are not a good �it to CA system (Derpsch and Friedrich, 
2009). More recently, to address soil erosion and drought problems along with increasing 
cost of energy and production inputs, government support has played an important role in 
accelerating the adoption rate of CA, leading to the relatively fast adoption for example in 
Kazakhstan and China. 

Globally, CA adoption is increasing at a rate of 10 m ha annually. Adoption of this practice 
was less than 1 m ha in 8 countries in 1970 to 205 m ha in 102 countries in 2019 which was 
15% of the world’s cropland area. In Argentina, Australia, Brazil, Canada, Paraguay, South 
Africa, Uruguay and the USA, the CA methods are applied on more than half their cropped 
area (Kassam, 2022). 

2.2  Bangladesh context 
CA has emerged in South Asia (nine countries including Bangladesh) as an alternative 

to intensive tillage (Chaudhary et al., 2022), however, the area under CA in South Asia 
remains relatively low and its adoption is also slow (Fig. 1) compared with many other 
regions having similar climatic conditions (Somasundaram et al., 2020). However, 
adoption of CA in Bangladesh is far less than other Asian countries like China and India 
accounting for less than 1%.

The CIMMYT-Bangladesh �irst introduced CA based tillage technology in the farmers’ 
�ield for wheat crops in late 90’s with minimum tillage by 2WT operated seeder (Miah et al., 
2017) and introduced Chinese seeder in 1995 in this country. Later in 2002, Bangladesh 
Agricultural Research Institute (BARI) developed and patented BARI Seeder (PTOS) 
including inclined plate seed metering device suitable for minimum, strip and zero tillage for 
seeding of all upland crops. The BARI also developed BARI Seeder Bed Planter in 2007 and 
Zero till planter in 2015. Recently 4WT has been developed for the same purpose. Besides 
PTOS, Versatile Multi-crop Planters (VMP) has been developed with a provision of multiple 
crop establishment options including zero tillage, strip tillage, single pass shallow tillage on 
the �lat together with bed planting (both new and permanent beds), and even conventional 
tillage, seeding and fertilizer application options (Hossain et al., 2015; Haque et al., 2011; 
Hossain, 2023). Photographs of strip tillage, bed planting and zero tillage crop cultivation 
methods are provided in the Fig. 2.

6. Analysis of results from global and regional CA practices   
Reduced tillage intensity and prolonged growing period of cover crops could limit 

declines in soil organic matter and soil biota while maintaining soil structure and crop yield 
(Sleiderink et al., 2024).  Conservation Agriculture (CA) practice, especially after 3-5 years, 
is widely observed to increase crop yields, reduce soil degradation and develop systems that 
are more resilient to stresses caused by climate change (Kassam et al., 2009; Thierfelder and 
Wall, 2009; Jat et al., 2012). Most progress in CA has been made in large-scale commercial 
agriculture based on mechanized farming principles which are not yet adopted widely in 
rice-based cropping systems in Asia (Kassam et al., 2015). Although CA shows great promise 
in diverse agro-ecological environments, there is serious debate about its practical 
feasibility under certain farmer circumstances, especially for smallholders in mixed 
crop/livestock systems in tropical regions, where there is competition for crop residues 
between their utilization as animal feed. In Bangladesh, the CA adoption is slow since the 
farmers are not yet fully convinced of its long-term bene�its in respect of sustained soil 
health and crop productivity. Besides this, they �ind several constraints such as weed 
pressure, lack of land leveling, inaccessibility of appropriate machines, and lack of zero 
tillage service providers. Thus, integrating the best compatible cropping patterns 
accompanied by best management practices into the portfolio of farmers’ own technologies 
would improve system productivity, resource use ef�iciency and economic pro�itability 
(Alam et al., 2015).

Evidently large amount of research has been done on a single crop, as in temperate 
countries (Pittelkow et al., 2015) and in South Asia (Magar et al., 2022), not in any annual 
cropping system. Thus, future research in Bangladesh needs to be oriented over annual 
cropping system, although CA practice is more promising for non-rice crops e.g. wheat, 
pulses, mustard, but not potato.  Hence, the continuing spread of CA globally is creating a 
need for effective national and regional policy and institutional support (Kassam et al., 
2014b). As stated by (Bell et al., 2019), adoption of CA in the rice-wheat cropping system 
with the inclusion of pulses may lead to a greater sustainability of the CA system through 
increased SOC accumulation and lower C input to maintain soil health.

In the Eastern Gangetic Plains of Bangladesh, the cropping systems are predominantly 
rice based, having large yield gaps in farmers’ �ields because of poor management practices 
adopted by farmers. The increasing scarcity of resources (water, labor and energy) and 
production costs further make the rice-based cropping system less sustainable and less 
pro�itable. There is a need of highly productive, resource ef�icient and sustainable crop 
rotations and management practices that are adapted to the changes in agricultural, 
socioeconomic and climatic environment. Integrating the appropriate crop rotation 
accompanied by BMPs and CA into the portfolio of farmers’ own technologies are crucial for
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maximizing productivity and economic bene�its to the farmers (Ladha et al., 2009). There is 
also a need for breeding and selection of a rice plant type suitable for direct seeding after 
zero tillage in heavy-textured soils (Islam et al., 2015). 
 
7. Conclusions

Minimal soil disturbance, crop residue retention and legume-based crop rotation, the 
core components of CA, help increase crop productivity primarily due to SOC sequestration 
and decreased cost of production. The magnitude of bene�its depends on the duration of CA 
adoption and amount & types of crop residue retention. The CA approach is more applicable 
to dryland crops (wheat, mustard, pulses), and less to wetland rice. Adoption of CA in 
Bangladesh is slow and farmers’ and scientists’ hesitation to accept this approach is a major 
factor for it suggesting exploration of the bene�its of CA in wider agroclimatic conditions and 
cropping systems. Weed infestation, unavailability of appropriate CA machines and rice 
(75% area coverage) being the dominant crop are the major constraints to the farmers’ 
adoption of CA. The full bene�its of CA are not visible before 3-5 years during the time carbon 
sequestration and some other soil properties have improved. Most CA research is done on 
single crops and short-term, future CA research should be directed to a longer-term 
cropping system and for smallholder farmers. Hence, appropriate government policy 
support is important for increasing adoption of CA by the farmers.
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
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1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.
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1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
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contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
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(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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Abstract

Biochar, a stable organic amendment, can increase water and nutrient retention 
capacity of soil and thus may in�luence crop yield. The in�luence of biochar and chemical 
fertilizers on tomato yield was investigated through a pot culture experiment. There were 
six treatments viz., T0: Control (no fertilizer or biochar use), T1: 100% recommended dose 
of NPK fertilizer, T2: 100% recommended dose of biochar, T3: 75% biochar + 25% NPK 
fertilizers, T4: 50% biochar + 50% NPK fertilizers, and T5: 25% biochar + 75% NPK 
fertilizers. The recommended dose of N, P and K was 120, 60 and 60 kg ha-1, respectively. 
Biochar was used at 2 t ha-1.  Biochar contained 22.5% organic carbon, 0.028% N, 32.48 mg 
kg-1 P and 11.85 meq 100-1 g soil K. The variety was BARI Hybrid Tomato-4 (summer 
variety). The growth and yield parameters such as plant height, number of fruits plant-1, 
individual fruit weight, fruit diameter and fruit weight plant-1 were signi�icantly in�luenced 
by the different treatments.  Treatment T4 (50% biochar + 50% NPK fertilizer) recorded the 
maximum yield of tomato. Biochar application resulted in a notable increase in NPK 
concentration of tomato fruits. Use of 50% NPK fertilizer with biochar 2 t ha-1 positively 
in�luenced soil properties except pH.

Keywords: Biochar amendment, NPK fertilizers, Soil properties, Tomato, Yield
  
1. Introduction

Tomato (Solanum lycopersicum), one of the most widely cultivated and economically 
signi�icant vegetables globally, provides vitamins A, C, potassium, and antioxidants. The 
increasing demand for high-quality tomatoes has driven farmers to seek effective methods 
to enhance fruit yield and quality. Traditionally, use of chemical fertilizers plays a pivotal role 
in achieving higher crop yield by supplying readily available nutrients to plants. Studies have 
demonstrated that fertilizers can signi�icantly boost tomato growth and yield by ensuring an 
adequate supply of N, P and K (Bekbayeva et al. 2021; Bentamra et al. 2023). Nevertheless, 
an excess use of fertilizers can result in negative environmental consequences, such as soil 

acidi�ication, nutrient leaching, and contamination of water bodies (Yijie et al. 2022). In 
contrast, biochar, a stable, carbon-rich product obtained from the pyrolysis of organic 
materials under limited oxygen conditions, has brought attention as a sustainable soil 
amendment. Biochar has tremendous positive effect on water and nutrient retention 
capacity of soil and promoting bene�icial microbial activity (Lehmann and Joseph et al. 
2009). Research indicates that biochar can also mitigate greenhouse gas emissions and 
sequester carbon, contributing to climate change mitigation (Laird et al. 2009). The 
synergistic use of biochar and fertilizers presents a promising approach to sustainable crop 
production. Numerous studies have investigated the ef�icacy of biochar in addition with 
inorganic fertilizers on various crops, showing positive outcomes in terms of yield and soil 
condition (Bai et al. 2022; Wu et al. 2023). Biochar may increase fruit yield and quality of 
tomato by increasing nutrient uptake. (Abid et al. 2017). An application of biochar to soil 
resulted in remarkable increase in photosynthetic pigments, fruit yield and quality of tomato 
(Vaccari et al. 2015). This research aims to explore the combined effects of biochar and 
chemical NPK fertilizers with the principle of integrated nutrient management on the 
growth and yield of tomato. The �indings could offer valuable guidance to the farmers and 
agricultural practitioners striving for sustainable intensi�ication of tomato cultivation. 

2. Materials and Methods 
This experiment was conducted in the shade house of the Department of Soil Science of 

Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur during 
February to June 2023. The soil (0-15 cm depth) under study was collected from the HSTU 
study �ield, cleared of all debris and dried in a plastic sheet in the sun. Initial soil sample was 
analyzed for some physical and chemical properties. Analysis was done in the laboratory of 
the Department of Soil Science, HSTU, Dinajpur. The soil was sandy loam with pH 6.7 (soil: 
water ratio 1:2.5), Walkley and Black organic carbon 0.498%, total N (Kjeldahl N) 0.021%, 
Bray P 24.9 mg kg-1, NH4OAc exchangeable K 7.59 me% and CaCl2 extractable S 12.1 mg kg-1, 
respectively. 

The experiment consisted of six treatments with three replications, pots arranged in a 
completely randomized design (CRD). The treatments were T0 = Control (No fertilizer of 
biochar use), T1 = 100% recommended dose of fertilizers (RDF), T2 = 100% Biochar (2 t ha-1), 
T3 = 75% biochar + 25% RDF, T4 = 50% biochar + 50% RDF, T5 = 25% biochar + 75% RDF. 
The recommended dose of N, P and K was 20, 60 and 60 kg ha-1, respectively (FRG, 2018). 
Nutrient composition of biochar is depicted in Table 1.

Table 1. Nutrient composition of biochar used in the experiment 

Properties Value       Extraction methods

Organic Carbon (%) 22.5       Wet oxidation method.

Total N (%) 0.028       Micro-Kjeldahl method

Available P (ppm) 32.48       Olsen method

Exchangeable K (meq/100g soil) 11.85   NH4OAC extraction method

Total number of pots was 18.  An amount of 10 kg soil was �illed into each plastic pot. 
High yielding summer variety BARI Hybrid Tomato-4 was used as planting material.             

 The crop was harvested when it attained maturity. Data on the growth and yield 
parameters were recorded. Those parameters included plant height (cm), number of 
branches plant-1, number of �lowers plant-1, number of fruits per plant, individual fruit 
weight (g), fruit diameter (cm), fruit length (cm), and total fruit weight (g). Post-harvest soil 
samples from each pot were analyzed for pH, organic carbon, total N, available P, 
exchangeable K and available S contents.

The data were analyzed statistically by the use of Statistix 10 software. One-way analysis 
of variance (ANOVA), followed by Duncan’s Multiple Range Test (DMRT) was performed to 
determine signi�icant differences between the treatments. Values with p < 0.05 were 
considered as statistically signi�icant.  

                                      
3. Results and Discussion 

3.1 Effects of biochar and fertilizers on the growth and yield parameters of tomato

All the plant parameters signi�icantly varied due to different biochar and fertilizer 
treatments (Table 2), Treatment T4 (50% biochar + 50% NPK fertilizers) produced the 
tallest tomato plant (69.2 cm) and the maximum number of branches plant-1 (13) and T0 
treatment (control) produced the smallest plant (27 cm) and the minimum number of 
branches plant-1 (8). Use biochar might have in�luenced the soil’s water holding and nutrient 
retention capacity which in turn had enhanced   plant height and branches per plant (Suthar 
et al., 2018; Agbna et al., 2017). The maximum number of fruits plant-1 (6.00) was found in 
treatment T4 which is statistically similar with T5 treatment and the lowest result (2.00) was 
noted for treatment T0. In treatment T4 individual fruit weight (160.7 g) was the maximum 
and in treatment T0 it was the minimal (61.4 g). Biswas et al. (2017) reported that biochar 
worked positively in case of number of �lowers and fruits plant-1 and individual fruit weight. 
Treatment variations were not signi�icant in fruit diameter Similar research �indings were 
reported by Pathak et al. (2020) and Nabaei et al. (2021) when biochar was added to pots for 

tomato production. The main parameter i.e.  total fruit weight plant-1 (189.3 g) was the 
highest in treatment T4 and the lowest (150.7 g) in treatments T0 (control). Biochar when 
applied alone or in combination with fertilizers showed better performances in increasing 
total fruit weight plant-1 (Guo et al, 2021).

3.2 Effects of biochar and fertilizers on post-harvest soil properties
Soil pH and total N after crop harvest did not exhibit any signi�icant variation (Table 3) 

due to the addition of different doses of biochar in different treatments (p < 0.01). The 
organic carbon (OC) content signi�icantly varied with the different (p < 0.01) the treatments. 
The highest percentage of OC (0.60%) was found in T4 treatment and the lowest (0.41%) in 
control treatment which was statistically similar with the T1 treatment (0.58%). Available P, 
exchangeable K or available S content was signi�icantly different (p<0.01) with the different 
treatments. The greatest amount of available P (95.1 mg kg-1, exchangeable K (12.4 meq100-1 
g soil) and that of available S (17.8 mg kg-1) content were observed in T4 treatment and the 
lowest value of P i.e. 38.7 mg kg-1, K (6.86 meq100-1 g soil) and available S (11.1 mg kg-1) were 
noticed in T0 treatment. Aslam et al. (2014) found that the incorporation of biochar 
signi�icantly contributed to increased P content in soil.  Biochar application signi�icantly 
contributed to the highest content of exchangeable K and available S (Salem et al. 2019). 

Table 2. Effects of biochar and fertilizers on the growth and yield of tomato

Treatments Plant  No.  of  No. of  Individual  Fruit  Total fruit 
 height (cm) branches  fruits  fruit weight  diameter weight 
  plant-1 plant-1 plant-1 (g) (cm) plant-1 (g)

T0 27.0 d 8 d 2 d 61.4 e 3.43 150.7 e

T1 55.7 bc 10 c 4 bc 120.7 c 3.50 167.1 d

T2 65.7 abc 11 bc 3 cd 154.5 b 3.75 177.0 b

T3 54.7 c 12 ab 5 ab 118.1 d 3.53 178.1 b

T4 69.2 a 13 a 6 a 160.7 a 3.73 189.3 a

T5 67.0 ab 11 bc 5 ab 153.6 b 3.73 168.8 c

CV (%) 12.1 9.2 17.0 1.23 7.23 2.81

S.E. (±) 5.57 0.81 0.57 1.28 0.21 3.89

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

Table 3. Chemical properties of post-harvest soils

Treatments pH Total N (%) OC (%) Available P Exch. K Available S
    (mg kg-1) (me%) (mg kg-1)

T0 5.7 0.012 0.41 d 38.8f 6.9e 11.1e

T1 6.0 0.021 0.58 ab 85.8b 10.2b 16.4c

T2 6.1 0.014 0.57 b 67.7c 7.7d 14.8d

T3 5.6 0.021 0.48 c 46.2e 7.8c 16.9b

T4 6.2 0.021 0.60 a 95.1a 12.4a 17.8a

T5 6.3 0.014 0.57 b 61.6d 10.2b 14.4d

CV (%) 7.57 12.54 3.21 2.29 12.09 1.59

S.E. (±) 0.36 0.01 0.03 1.2 0. 81 0.19

T0 = Control (No fertilizer or biochar use), T1 = 100% RDF NPK, T2 = 100% 10 t ha-1 biochar, 
T3 = 75% biochar + 25% NPK fertilizer, T4 = 50% biochar + 50% NPK fertilizer, T5 = 25% 
biochar + 75% NPK fertilizer.

4. Conclusions
The �indings of the study clari�ied that biochar has tremendous in�luence on the 

growth, yield and yield contributing attributes of tomato along with soil properties. The 
effect of combined application of biochar and fertilizers was better than that of their 
single application. The overall result showed that combined application of 50% biochar + 
50% NPK fertilizer demonstrated the maximum yield of tomato. It appeared that 
application of biochar signi�icantly increased organic matter, total N, available P, 
exchangeable K and available S content in the soil. However, such biochar study needs to 
be done under �ield conditions.  
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